Nicotinic receptor activation increases [3H]dopamine uptake and cell surface expression of dopamine transporters in rat prefrontal cortex.
نویسندگان
چکیده
Previous research shows that nicotine increases dopamine (DA) clearance in rat prefrontal cortex (PFC) and striatum via a nicotinic receptor (nAChR)-mediated mechanism. The present study investigated whether activation of nAChRs regulates DA transporter (DAT) function through a trafficking-dependent mechanism. After nicotine administration (0, 0.3, and 0.8 mg/kg s.c., 15-1440 min after injection), DAT function and trafficking in synaptosomes of PFC and striatum were determined. nAChR mediation of the effect of nicotine on DAT function and trafficking in PFC was determined by pretreatment with mecamylamine, dihydro-beta-erythroidine, or methyllycaconitine. Nicotine (0.8 mg/kg, 15 and 30 min after injection) increased the maximal velocity (V(max)) of [3H]DA uptake in PFC with no change in K(m), compared with control. Biotinylation and Western blot assays showed that nicotine (0.8 mg/kg; 30 min) increased DAT cell surface expression in PFC. In contrast, a lower dose of nicotine (0.3 mg/kg; 30 min) did not alter DAT function and trafficking in PFC. Pretreatment with mecamylamine, dihydro-beta-erythroidine, or methyllycaconitine (1.5, 8.0, and 10.0 mg/kg s.c., respectively) completely blocked the nicotine-induced increase in V(max) in PFC. In addition, mecamylamine completely blocked the nicotine-induced increase in DAT cell surface expression in PFC. Nicotine did not increase DAT function and cell surface expression in striatum, indicating that nicotine modulates DAT function in a brain region-specific manner. Thus, results from the present study suggest that the nicotine-induced increases in DAT function and cell surface expression in PFC may mediate some of the behavioral effects of nicotine.
منابع مشابه
Long Withdrawal of Methylphenidate Induces a Differential Response of the Dopaminergic System and Increases Sensitivity to Cocaine in the Prefrontal Cortex of Spontaneously Hypertensive Rats
Methylphenidate (MPD) is one of the most prescribed drugs for alleviating the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD). However, changes in the molecular mechanisms related to MPD withdrawal and susceptibility to consumption of other psychostimulants in normal individuals or individuals with ADHD phenotype are not completely understood. The aims of the present study were: (i)...
متن کاملOpposing role of dopamine D1 and D2 receptors in modulation of rat nucleus accumbens noradrenaline release.
The role of dopamine receptors in the modulation of nucleus accumbens noradrenaline release was investigated in superfused rat brain slices. At concentrations of </=1 microM, dopamine enhanced, whereas at higher concentrations dopamine inhibited electrically evoked [3H]noradrenaline release. The D1 receptor agonist SKF-38393 increased, whereas the D2 agonist quinpirole inhibited evoked [3H]nora...
متن کاملAlpha-noradrenergic receptor modulation of the phencyclidine- and delta9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex.
The noncompetitive NMDA receptor antagonist phencyclidine (PCP) and the neuronal cannabinoid receptor agonist delta9-tetrahydrocannabinol (THC) are two agents shown to have psychotomimetic properties in humans. Both drugs increase dopamine release and utilization in the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. In the present series of studies, the effects ...
متن کاملA review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)
Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...
متن کاملClozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation.
Clozapine (1-10 mg/kg s.c.) produces a selective increase in dopamine release in rat prefrontal cortex which is, in large part (approximately 50%), mediated via activation of 5-HT1A receptors. Clozapine is a moderately potent, partial 5-HT1A receptor agonist and activation of 5-HT1A receptors may contribute to its efficacy against negative symptoms and reduced extrapyramidal side effect liabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 328 3 شماره
صفحات -
تاریخ انتشار 2009